

HT6751A/B

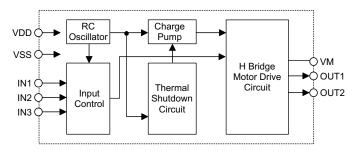
Camera Motor Driver (1.5 Channel)

Features

- Operating voltage: 2.0V~6.0V
- Operating current < 2mA at 3.0V, No load
- Standby current I_{VDD}< 2μA, no load
- Separate logic power supply and motor power supply
- Built-in thermal shutdown circuit
- Built-in H bridge control circuit
- Built-in spark killer diode
- Provides strong ESD (min. of 4KV) per pin
- 8-pin SOP package

Applications

• Camera motor driver


· Toy motor driver

General Description


The IC can control H Bridge circuit for motor driving. It provides Spark Killer Diode/Thermal Shutdown function/Forward function/Re-

verse function/Brake function/Stop function for motor driver application. It is designed by LSI high technology with low power process.

Block Diagram

Pin Assignment

Pin Description

Pin No.	Pin Name	I/O	Description	
1	VM	P	Power of motor driving circuit	
2	OUT1	О	Connect to motor terminal	
3	IN3	I	Input signal	
4	VSS	_	Negative power supply, ground	
5	IN1	I	Input signal	
6	VDD	_	Positive power supply	
7	IN2	I	Input signal	
8	OUT2	О	Connect to motor terminal	

Absolute Maximum Ratings

Supply Voltage V_{DD} -0.3V to 7.0V	Storage Temperature $40^{\circ}\mathrm{C}$ to $125^{\circ}\mathrm{C}$
Voltage to Input Terminal–0.3V to $\ensuremath{V_{DD}}\xspace+0.3$	Operating Temperature–20°C to $85^{\circ}\mathrm{C}$
Junction Temperature 150°C	

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

 $Ta=25^{\circ}C$

Cb-al	Domonoton	Test Conditions		NT:	Т	Max.	TT *4
Symbol	Parameter	V_{DD}	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage 1			2.0	_	6.0	V
VM	Operating Voltage 2		Motor loading	1.8	_	6.0	V
$I_{ m VM}$	V _M Current		Standby mode with internal pump	_	_	10	μА
I_{OPR}	Operating Current	5V	No load @ V _{DD} =5V	_	_	2	mA
I_{VDD}	Standby Current	5V	Standby mode	_	1	2	μА
${ m I}_{ m IL}$	Input Leakage Current	5V	0 <vin<v<sub>DD</vin<v<sub>	-1.0		1.0	μΑ
$ m V_{IL}$	Input Low Voltage	5V	_	-0.3		$0.3V_{ m DD}$	V
V_{IH}	Input High Voltage	5V	_	$0.6 { m V}_{ m DD}$	_	V_{DD} +0.3	V
R _{ON}	H Bridge On Resistance		(up_NMOS+down_ NMOS) at 3V	_		0.4	Ω

Symbol	D	7	Test Conditions	М:	Тур.	Max.	Unit
	Parameter	$\mathbf{V_{DD}}$	Conditions	Min.			
$t_{\mathrm{CP_ON}}$	Charge Pump Turn On Time	5V	V _{DD} =VM=5V, Ivm=0.5A	_	_	2	ms
$t_{\mathrm{CP_OFF}}$	Charge Pump Turn Off Time	5V	V _{DD} =VM=5V, Ivm=0.5A	_	_	1	ms
$t_{H_{ON}}$	H Bridge Turn On Time	5V	V _{DD} =VM=5V, Ivm=0.5A	_	_	10	μs
${ m t_{H_OFF}}$	H Bridge Turn Off Time	5V	V _{DD} =VM=5V, Ivm=0.5A	_	_	5	μs

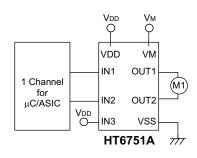
Functional Description

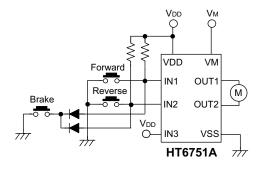
• In HT6751A function

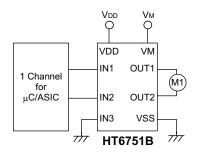
IN1	IN2	IN3	Function	MOS On	MOS Off
0	1	1	Motor1 forward	P1/N2	P2/N1
1	0	1	Motor1 reverse	P2/N1	P1/N2
0	0	1	Motor1 brake	N1/N2	P1/P2
1	1	1	Standby mode	_	P1/P2/N1/N2
0	1	0	Motor2 forward	P2/(N3)	N2/(P3)
1	0	0	Motor2 reverse	N2/(P3)	P2/(N3)
0	0	0	Motor2 brake	N2/(N3)	P2/(P3)

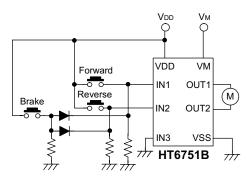
• In HT6751B function

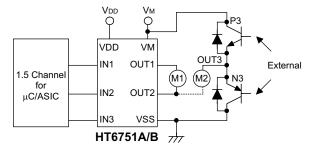
IN1	IN2	IN3	Function	MOS On	Mos Off
1	0	0	Motor1 forward	P1/N2	P2/N1
0	1	0	Motor1 reverse	P2/N1	P1/N2
1	1	0	Motor1 brake	N1/N2	P1/P2
0	0	0	Standby mode		P1/P2/N1/N2
1	0	1	Motor2 forward	P2/(N3)	N2/(P3)
0	1	1	Motor2 reverse	N2/(P3)	P2/(N3)
1	1	1	Motor2 brake	N2/(N3)	P2/(P3)


3




- In normal state and standby mode
 - Charge pump circuit is in off state
 - Oscillator circuit is in off state
 - Standby current is below 2μA
 - For HT6751A, the oscillator circuit and charge pump circuit is on until IN1 or IN2 or IN3 is low input
 - For HT6751B, the oscillator circuit and charge pump circuit is on until IN1 or IN2 or IN3 is high input


• The system enters thermal shutdown mode (current is limited below 500mA) when the temperature of the internal sensor is greater than Junction Temperature and then release this mode until the temperature of the internal sensor below (Junction Temperatue >150°C). The system can accept IN1/IN2/IN3 signal when in thermal shutdown mode.


Application Circuits

Holtek Semiconductor Inc. (Headquarters)

No.3 Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.

Tel: 886-3-563-1999 Fax: 886-3-563-1189

Holtek Semiconductor Inc. (Taipei Office)

5F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C.

Tel: 886-2-2782-9635 Fax: 886-2-2782-9636

 $Fax: 886\text{-}2\text{-}2782\text{-}7128 \ (International \ sales \ hotline)$

Holtek Semiconductor (Hong Kong) Ltd.

RM.711, Tower 2, Cheung Sha Wan Plaza, 833 Cheung Sha Wan Rd., Kowloon, Hong Kong

Tel: 852-2-745-8288 Fax: 852-2-742-8657

Copyright © 2000 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

5